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von Neumann equations with time-dependent Hamiltonians and supersymmetric
quantum mechanics
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Starting with a time-independent Hamiltonianh and an appropriately chosen solution of the von Neumann

equationi ṙ(t)5@h,r(t)# we construct its binary-Darboux partnerh1(t) and an exact scattering solution of

i ṙ1(t)5@h1(t),r1(t)#, whereh1(t) is time dependent and not isospectral toh. The method is analogous to
supersymmetric quantum mechanics but is based on a different version of a Darboux transformation. We
illustrate the technique by the example whereh corresponds to a one-dimensional harmonic oscillator. The
resultingh1(t) represents a scattering of a solitonlike pulse on a three-level system.

PACS number~s!: 03.65.Fd, 05.45.Yv, 11.30.Pb
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One of the main ideas of supersymmetric~SUSY! quan-
tum mechanics~QM! can be summarized as follows@1#. As-
sume we know a ground stateuc0& of a stationary Schro¨-
dinger equation~SE!

Huc0&5~Hkin1V!uc0&5E0uc0&, ~1!

with someV andE0. Using uc0& we construct an ‘‘annihila-
tion’’ operator A5A(c0) satisfying Auc0&50 and H2E0
5A†A. Now defineuc1&ªAuc& ~hereuc& is any eigenstate
of H linearly independent ofuc0&, with eigenvalueE) and
H15AA†5Hkin1V1 . H1 is the so-called SUSY partne
Hamiltonian ofH. Then, usingAH5AA†A5H1A, one finds
that

~Hkin1V1!uc1&5Euc1&. ~2!

In a single step we have produced a new potentialV1 and
one solution of the corresponding stationary SE.

The mapV→V1 is known to be a particular example of
Darboux transformation~DT! @2#. All DT’s transform a
‘‘potential’’ V into V1 and simultaneously generate an ‘‘a
nihilation’’ operator A(c0) satisfying A(c0)c050, where
c0 is a solution of some partial differential linear equati
associated withV. The physical interpretation of such a
abstract ‘‘potential’’ depends on the problem.

SUSY QM deals withlinear SE, and for this reason th
density matrix generalization is not interesting:H1 can be
inserted either into the SE or into the von Neumann equa
~vNE! i ṙ5@H1 ,r#. However, the vNE has a structure whic
is algebraically different from that of the SE, and therefo
allows for different DT’s. A candidate is the so-called bina
DT ~BDT! originally constructed in Ref.@3#, and applied to
optical soliton equations. Quite recently the technique w
applied to Yang-Mills equations@4# and nonlinear vNE@5,6#.
A tutorial introduction to density-matrix applications wa
given in Ref. @7#. There are formal analogies between t
BDT and the ‘‘dressing method’’ of Novikovet al. @8#, but
technically the two procedures are inequivalent~for a discus-
sion, cf. Refs.@4,6#!.

The purpose of the paper is to show that the BDT lead
a new kind of SUSY-type QM for density matrices whic
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does not have a counterpart in SUSY QM based on SE. A
intermediate stage of the construction we solve the nonlin
vNE

i ṙ5@H,r2#, ~3!

whereH is a time-independent Hamiltonian. The set of s
lutions of Eq.~3! contains all the pure states of standard Q
since for r25r ~3! reduces to the linear vNE. Forr2Þr
there exist at least two more classes of solutions. One
them occurs forr ’s satisfying eitherr22ar50 with a
PR,aÞ1, or a weaker condition@H,r22ar#50 ~now a
51 is acceptable!. In both casesr(t)5e2 iaHtr(0)eiaHt. The
second class is of the formr(t)5e2 iaHtr int(t)e

iaHt with
r int(2`)Þr int(1`). These additional solutions, here calle
self-scattering~SS! solutions, are fundamental to our con
struction because of the following property: Each SS so
tion of thenonlinearvNE ~3! with a time-independent His
simultaneously a scattering solution of alinear vNE with a
time-dependentHamiltonianh1(t). Both the SS solution and
the new Hamiltonian are algebraically constructed in ter
of the BDT. The construction does not make use of sup
charges, and for this reason the resulting partner Ham
nians will be termed the binary-Darboux~BD! partners.

The BDT method of solving Eq.~3! was described in
Refs. @5,6#. We start with the family of Lax pairs, param
etrized byvPC,

zvucv&5~r2vH !ucv&, ~4!

i uċv&5~Hr1rH2vH2!ucv&, ~5!

wherezv is a complex eigenvalue. Pair~4! and~5! is here the
analog of Eq.~1!; r and h5Hr1rH play the role of the
‘‘potentials.’’

The connection of Eqs.~4! and~5! with Eq. ~3! is twofold.
First, the necessary condition for the existence ofucv& is
given by Eq.~3!. Now assumeucm&5ucm(t)& is any solution
of Eqs.~4! and ~5! with v5m and somezm . Denote byPm
the projector onucm&, and letlPC be another parameter
andr any solution of Eq.~3!. Defining
3325 © 2000 The American Physical Society



e
n

d

i
o

a
f.

c
e

t
h

m
n-
a

ni-

is-

BD
i-

in

3326 PRE 61CZACHOR, DOEBNER, SYTY, AND WASYLKA
r15S 11
m2m̄

m̄
PmD rS 11

m̄2m

m
PmD 5:UmrUm

† ~6!

ucl,1&5S 12
m2m̄

l2m̄
PmD ucl&5:A~cm!ucl& ~7!

we find ~cf. Refs.@5,6#!

zlucl,1&5~r12lH !ucl,1&, ~8!

i uċl,1&5~Hr11r1H2lH2!ucl,1&. ~9!

The ‘‘Hamiltonians’’ r2lH andr12lH possess the sam
eigenvaluezl , and their eigenvectors are related by the ‘‘a
nihilation operator’’A @note thatA(cm)ucm&50]. However,
these are not the physical BD partners we are intereste
The BDT transforms the two ‘‘potentials’’r→r1 and h
→h1 in such a way that

i ṙ15@Hr11r1H,r1#5@h1 ,r1#, ~10!

since this condition has to be satisfied wheneverucl,1& ex-
ists. The BD-transformed Lax pair~8! and~9! can be used to
repeat the procedure:r1→r2 andh1→h2.

To explicitly show that the construction ofh1 is non-
trivial, we have to make an assumption about the Ham
tonian H. We shall concentrate on the isospectral family
the one-dimensional~1D! harmonic oscillator~HO!, since
for Hamiltonians with equally spaced spectra a strategy le
ing to nontrivial solutions was worked out in detail in Re
@5#. An alternative strategy was described in Ref.@6#, and
applied to a concrete example in Ref.@7#. In both cases the
result is a SS solution.

We take the HamiltonianH5eN, wheree is some param-
eter,

N5 (
n50

`

~r 1n!ur 1n&^r 1nu, ~11!

andr PR ~e.g., for a 1D HO,r 51/2; for a 3D isotropic HO,
r 53/2). In the Hilbert space spanned by$ur 1n&%n50

` , con-
sider a 3D subspace spanned by three subsequent ex
statesuk&,uk11&, and uk12&. It should be stressed that th
same strategy can be applied to anyH with discrete spec-
trum, provided there exist three eigenvalues ofH satisfying
Ek2El5El2Em .

In order to obtain a SS solutionr1(t), one has to star
with an appropriater(t). The problem of how to select suc
a r was discussed in great detail in Ref.@5#. The fact that Eq.
~15! does indeed solve Eq.~3! with H given by Eq.~11! can
be verified by a straightforward calculation.

We consider a one-parameter family of solutions, para
etrized byaPR. Physically the parameter turns out to co
trol the scattering process. Mathematically it parametrizes
initial condition for the solution of the Lax pair~4! and ~5!.
We solve Eqs.~4! and ~5! with

r~ t !5e2 i5Htr~0!ei5Ht5:W5r~0!W5
† , ~12!
-

in.
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r~0!5
5

2
~ uk&^ku1uk12&^k12u!

1
51A5

2
uk11&^k11u

2
3

2
~ uk12&^ku1uk&^k12u!, ~13!

andm5 i /e. For later purposes we have introduced the u
tary operatorWa(t)5e2 iaHt. Equation~12! is a solution of
Eq. ~3!, and therefore the necessary condition for the ex
tence of uc i /e(t)& is satisfied. 5H in Eq. ~12! comes from
@H,r(0)2#55@H,r(0)#, and the resulting equalities

i ṙ5@Hr1rH,r#55@H,r#5@h,r#. ~14!

h55H can be regarded as the first element of the pair of
partner Hamiltonians we are going to find. The initial cond
tion for Eqs.~4! and ~5! is

uc i /e~0!&5
1

A11a2
uk11&

1
a

A11a2 S 2 iA31A5

6
uk&

1A 2

913A5
uk12& D .

InsertingPi /e , which projects onuc i /e(t)&, into Eq.~6! with
m5 i /e, and normalizing the resulting solution to obta
Tr r151, we finally obtain the density matrix

r1~ t !5 (
u,v50

2

r1~ t !11u,11vuk1u&^k1vu, ~15!

where the matrix of coefficients in Eq.~15! is

r1~ t ! . . . 5
1

151A5 S 5 j~ t ! z~ t !

j̄~ t ! 51A5 j~ t !

z̄~ t ! j̄~ t ! 5
D , ~16!

with

j~ t !5
~213i 2A5i !A31A5a

A3~ev0t/51a2e2v0t/5!
eiv0t, ~17!

z~ t !52
9e2v0t/51~114A5i !a2

3~e2v0t/51a2!
e2iv0t, ~18!

andv0510e/(151A5). Writing Eq. ~15! as

r1~ t !5e2 iv0Ntr int~ t !eiv0Nt, ~19!

one finds, for 0,uau,`,
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r int~2`!

5
1

151A5 S 5 0 2
1

3
2

4A5i

3

0 51A5 0

2
1

3
1

4A5i

3
0 5

D ;

r int~1`!5
1

151A5 S 5 0 23

0 51A5 0

23 0 5
D .

This shows that Eq.~15! is a SS solution.
The BD partnerh1 occurring in Eq.~10! is nonunique,

and defined up to an operator commuting withr1. This free-
dom is useful. Set

h15~H1ec11!r11r1~H1ec11!1ec21, ~20!

with constantsc1 and c2. Denotings j ,k5u j &^ku, and using
the above explicit solution, we find

h1~ t !5H̃1H1~ t !, ~21!

whereH̃5v0(N1c11)1ec21 and

H1~ t !5
v0

A5
~k1c111!sk11,k11

1
v0

5 S k1c11
1

2D @j~ t !sk,k111 j̄~ t !sk11,k#

1
v0

5
~k1c111!@z~ t !sk,k121 z̄~ t !sk12,k#

1
v0

5 S k1c11
3

2D @j~ t !sk11,k121 j̄~ t !sk12,k11#.
j(t) andz(t) are essentially the Rabi frequencies. The non
niqueness ofh1 was used again to extend the nonperturb
part of Eq.~21! beyond the 3D subspace. Our constructi
guarantees that Eq.~15! is a scattering solution of the corre
sponding time-dependentlinear vNE i ṙ15@h1(t),r1#. Let
us note here that the dynamics ofr1 is related tor(0) by the
unitary transformationUi /eW5. In general, taking arbitrary
Um and Wa , we can alternatively define the scatterin
Hamiltonian as

h15 iU̇ mUm
† 1aUmHUm

† . ~22!

h1 is a nontrivial scattering Hamiltonian providedr1(t) is a
SS solution of Eq.~3!.

Equation ~21! represents a complicated time-depend
three-level perturbation of a HO. In order to better und
stand the kind of interaction we have produced, seta
51, c11k1150, ec252v0c1, and d5A31A5(213i
2A5i )/(2A3). The Hamiltonian now reads

h1~ t !5v0N2
v0deiv0t

10cosh~v0t/5!
~sk,k112sk11,k12!

2
v0d* e2 iv0t

10cosh~v0t/5!
~sk11,k2sk12,k11!. ~23!

One can think ofh1 as describing a 1D HO located atx
50 and interacting with the well-known McCall-Hah
‘‘sech’’ optical soliton @10#. Let us recall, however, that th
result is more general and valid for anyH with discrete spec-
trum provided the 3D subspace corresponds to three equ
spaced eigenvalues. Taking different parameters inh1 we
obtain additional terms reminiscent of the ‘‘sech-tanh’’ pul
occurring in inhomogeneously broadened three-level me
@11#. It is interesting that forc11k11Þ0 the perturbation
H1(t) contains a time-independent term proportional
uk11&^k11u. Redefining the nonperturbed part by
-

e

FIG. 1. ^x& as a function of time and the pa
rametera, 5<a<100, which controls the initial
condition. The moment of SS moves toward th
future ~past! as uau grows ~decreases!. For uau
5`(a50) SS is shifted to1(2)` ~no scatter-
ing!.
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H̃85v0N1
v0

A5
~k1c111!uk11&^k11u, ~24!

we break the equal spacing of the nonperturbed Hamilton
simultaneously detuning the highest and lowest levels fr
v0 and generating a transition with a doubled frequen
2v0.

A general property of Eq.~3! is the fact that^H&n
5 Tr Hrn are integrals of motion for any naturaln and any
solutionr @9#. In particular, this implies that the sum of th
perturbed eigenvalues ofh1 is time independent. The sam
holds for the average energy^E&5 Tr h1(t)r1(t). However,
the eigenvalues themselves may be time dependent. Foc1
1k1150,c250, the eigenvalues of the restriction ofh1 to
the 3D subspace are 0 and

6
v0

5
A2514

e2v0t/5a2

~e2v0t/51a2!2
.

This implies that the BD partnersh55H and h1 are not
isospectral, a situation that may occur in higher-dimensio
SUSY QM.

The figures illustrate properties of the scattering solutio
Figure 1 shows the average position of the 1D HO^x&
5(1/A2) Trr1(a1a†) as a function of time anda. In the
asymptotic regions the average is 0. For times where^x&
'0 the dynamics is effectively given by

r in~ t !5e2 iv0Ntr int~2`!eiv0Nt,

rout~ t !5e2 iv0Ntr int~1`!eiv0Nt.

As uau grows the moment of SS is shifted toward the futu
For a50 or uau5` there is no scattering sincer int becomes
time independent.

FIG. 2. Probability density in position space as a function
time for k52.5,a55, 0,t,20. The asymmetry of the probabilit
density is responsible for the oscillation of^x& seen in Fig. 1.
,
h.
n,

y
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s.

.

The asymptotic probability densities in position spa
%(x,t)5^xur1(t)ux& are symmetric~implying ^x&50) ~Fig.
2! ~also see Fig. 3! Such time-dependent probability distr
butions represent a new type of nonlinear effect.

The above effects can be extended to higher-dimensio
subspaces. One of the possibilities is related to the ‘‘we
superposition’’ principle: For any family of solutions$rk% of
Eq. ~3! satisfying rkr l50 for kÞ l , the combinationr(t)
5(kpkrk(pkt) is also a solution of Eq.~3!. One can gener-
alize the procedure to many noninteracting HO’s and con
eration of systems with degeneracy, such as HO’s with s
leads to a nontrivial second iteration of the BDT:r→r1
→r2 and h→h1→h2. Another possibility is related to the
Yang-Mills ~YM ! case. The result of Ref.@4# shows that a
class of YM equations can be integrated by BDT. The an
self-dual YM case is algebraically related to Euler-Arno
equations@12#, which are a particular case of Eq.~3! as dis-
cussed in Ref.@5#.

Exactly solvable equations with time-dependent Hamil
nians are a rarity in quantum mechanics. The technique
have described leads to a broad class of such equations
example we have discussed, in spite of its simplicity, sho
the richness and efficiency of the method. The result
three-level dynamics is highly nontrivial and physically i
teresting. We expect the method to prove useful in ma
branches of quantum physics.
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f
FIG. 3. Contour plot of the probability distribution from Fig.

for 225,t,60. The continuous transition between the tw
asymptotic states~with symmetric probability distributions! is
clearly visible.
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